Introduction

• Post-disaster restoration planning for a water supply system is important but very difficult.

• Difficulties in restoration planning:
 1. Situation awareness in dynamic and uncertain situation → Technical problem
 2. Prioritization in restoration process → Socio-technical problem

• Great need for a high-fidelity simulation of water supply system restoration for testing and comparing various prioritizations
1. To develop a high-fidelity simulation of water supply system restoration
 – Considering multiple interdependencies underlying urban systems
 – Implementing a realistic restoration task
 – Considering hydrodynamic behavior of water distribution system
 – Using the actual city data

2. To apply this simulation to practical decision-making support
 – Restoration planning reflecting the priority in restoration process
Modeling Framework

Multiple Interdependencies

<table>
<thead>
<tr>
<th>Dependence Of</th>
<th>Civil Life</th>
<th>Industry</th>
<th>Lifeline</th>
</tr>
</thead>
</table>
| Civil Life | 1) Between civil life
| | ● Means-ends
| | ● Resource conflict
| | ● Geographical
| Industry | 2) Civil life on industry
| | ● Supply
| | ● Geographical
| Lifeline | 3) Civil life on lifeline
| | ● Supply
| | ● Geographical
| Civil Life | 4) Industry on civil life
| | ● (Labor) Supply
| | ● Geographical
| Industry | 5) Between industry
| | ● Supply
| | ● Demand
| | ● Alternative
| | ● Geographical
| Lifeline | 6) Industry on lifeline
| | ● Supply
| | ● Geographical
| Civil Life | 7) Lifeline on civil life
| | ● Demand
| | ● (Labor) Supply
| | ● Geographical
| Industry | 8) Lifeline on industry
| | ● Demand
| | ● Supply
| | ● Geographical
| Lifeline | 9) Between lifeline
| | ● Supply
| | ● Demand
| | ● Alternative
| | ● Geographical

4
Simulation Model

• Agent-based model
 – Citizen: daily activity
 – Company: production process
 – Restoration Squad: restoration process

• Network model
 – Lifeline Infrastructures
 – Power grid, **water supply**, sewage, gas, **road**, waste disposal, telecommunication, etc.
Restoration Task

- **Restoration procedure**
 1. Get the resources for restoration from the warehouse
 2. Move to the damaged pipeline
 3. Repair by using the resources

- **Realistic restoration operations**
 - Operate valves
 - Use a heavy machinery
 - Partition the affected area and repair in block units
 - Distribute water tank trucks
 - Receive the support from outside the city
Hydrodynamic Behavior

• Hydrodynamic Analysis API (EPANET)
 – Calculate the water demand, flow, pressure, and so on
 – Evaluate the water availability of each residence / company
 – https://www.epa.gov/water-research/epanet
City Model

- Target area under this study
 - Arao city
 - In Kumamoto prefecture, Japan
 - With a population of about 50,000 people

- City model considering:
 - Population and its distribution
 - Number of companies
 - Location of important facilities such as hospitals and evacuation centers
 - Road network topology from OSM
 - Water supply network topology
Optimization of Restoration Plan

• Genetic Algorithm (GA)
 – Chromosome: restoration plan
 • the order of restoration for damaged pipelines
 • the squad in charge of the restoration

\[
\text{fitness} = \alpha \times \text{fitness}_L + \beta \times \text{fitness}_I + \gamma \times \text{fitness}_C
\]

- \text{fitness}_L (Lifeline) Restoration rate
- \text{fitness}_I (Industry) Operation rate
- \text{fitness}_C (Civil Life) Quality of life

– Weight coefficients \((\alpha, \beta, \gamma)\) = the priority of each subsystem
Simulation

- Simulation Procedure

 start

 initialize agents and networks

 initialize damage on water pipelines

 run recovery simulation

 evaluate fitness

 final generation?

 end

- Simulation Setting

<table>
<thead>
<tr>
<th>Network (*1)</th>
<th>Nodes</th>
<th>173</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Links</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>Damaged Links (*2)</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agent</th>
<th>Company</th>
<th>153</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Residence</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>Citizen / Worker (*3)</td>
<td>1540</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GA</th>
<th>Population</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Generations</td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td>Selection Rate</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Crossover Rate</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>Mutation Rate</td>
<td>0.1</td>
</tr>
</tbody>
</table>

(*1) only the central part of Arao city
(*2) estimated by potential earthquake damage
(*3) 1 agent representing approx. 11 people
Simulation Results (1)

- As the number of generations increases, the fitness value becomes higher.
- The optimized plan was 5 days shorter than non-optimized plan.
- GA optimization works appropriately.
• We can observe and evaluate the restoration process of each three subsystem.
Simulation Results (3)

<table>
<thead>
<tr>
<th>Objective Function</th>
<th>Lifeline</th>
<th>Industry</th>
<th>Civil Life</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>α:β:γ=1:1:1</td>
<td>70.85</td>
<td>94.60</td>
<td>82.28</td>
<td>247.73</td>
</tr>
<tr>
<td>α:β:γ=1:0:0</td>
<td>69.85</td>
<td>106.94</td>
<td>91.03</td>
<td>267.82</td>
</tr>
<tr>
<td>α:β:γ=0:1:0</td>
<td>80.40</td>
<td>87.13</td>
<td>98.80</td>
<td>266.33</td>
</tr>
<tr>
<td>α:β:γ=0:0:1</td>
<td>71.86</td>
<td>108.89</td>
<td>83.18</td>
<td>263.93</td>
</tr>
</tbody>
</table>

- The different objective functions provide slightly different results.
- We can compare the optimized restoration under various prioritizations.
Conclusion

• A high-fidelity simulation of water supply system restoration was developed.
 – Considering multiple interdependencies underlying urban systems
 – Implementing a realistic restoration task
 – Considering hydrodynamic behavior of water distribution system
 – Using the actual city data

• Optimization of restoration plan using GA was conducted.
 – GA optimization works appropriately.
 – We can observe the restoration process of each three subsystem.
 – We can compare the optimized restoration under various prioritizations.
Thank You!

s-koike@cse.t.u-tokyo.ac.jp