Fragility Evaluation with Aleatory and Epistemic Uncertainty against Fault Displacement for Reactor Buildings

* Hirokazu Tsuji (Japan Nuclear Safety Inst.)
 Minoru Kanechika (Kajima Corp.)
 Yoshinori Mihara (Kajima Corp.)
 Kenshiro Ishiki (Kajima Corp.)
Background

Nuclear power plant facilities shall be on ground without outcrop of capable fault.

Big issue in regulatory process in Japan

[Japan Nuclear Safety Institute (JANSI)]
- “On-site Fault Assessment Method Review Committee”
- JANSI report (Sep. 2013)
- Preliminary reactor building responses against fault displacement 30cm

Cf. 30cm is based on the largest value of secondary faults from approximately 120 years of data in Japan.
Objective and Method

[Objective]
- To obtain basic fragility data for aleatory and epistemic uncertainties of reactor building responses against fault displacement

[Method]
1. Quantitative results by nonlinear FEA for soft rock site
 - **Aleatory uncertainty**: the randomness of soil & building material properties
 - **Epistemic uncertainty**: the uncertainty of fault hazards

2. Analytical results for hard rock site, comparison with soft rock site

3. Preliminary fragility evaluation against **fault displacement 60cm** for plant-wide risk assessment

4. Some technical issues for fragility procedure in the future
Analysis Model

[Soil-structure interaction finite element model]

- Building: BWR-type reactor building with base mat slab 5.5m thick
- Soil: soft rock site with Vs=500m/s, hard rock site with Vs=1500m/s
- Material nonlinearity, contact interaction between building and soil
Analysis Cases

Analysis cases to study on aleatory and epistemic uncertainty

<table>
<thead>
<tr>
<th>Uncertainty</th>
<th>Items</th>
<th>Basic case</th>
<th>Parametric study (11 cases)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aleatory uncertainty</td>
<td>Randomness of Vs and Fc</td>
<td>Vs=500m/s Fc=44.1MPa</td>
<td>4 cases of ±σ combination</td>
</tr>
<tr>
<td></td>
<td>Surface soil Vs</td>
<td>500m/s</td>
<td>250m/s, 150m/s</td>
</tr>
<tr>
<td></td>
<td>Coefficient of friction</td>
<td>0.0</td>
<td>0.8, 1.6</td>
</tr>
<tr>
<td>Epistemic uncertainty</td>
<td>Fault type</td>
<td>Reverse</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>Fault position</td>
<td>1/2 of base mat</td>
<td>1/4 of base mat</td>
</tr>
<tr>
<td></td>
<td>Dip angle</td>
<td>60°</td>
<td>30°</td>
</tr>
</tbody>
</table>

Analysis cases to compare soft rock site with hard rock site

<table>
<thead>
<tr>
<th>Items</th>
<th>Case0</th>
<th>Case6</th>
<th>Case9</th>
<th>Case12</th>
<th>Case13</th>
<th>Case14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support soil Vs</td>
<td>500m/s</td>
<td>500m/s</td>
<td>500m/s</td>
<td>1500m/s</td>
<td>1500m/s</td>
<td>1500m/s</td>
</tr>
<tr>
<td>Surface soil Vs</td>
<td>500m/s</td>
<td>150m/s</td>
<td>500m/s</td>
<td>1500m/s</td>
<td>150m/s</td>
<td>1500m/s</td>
</tr>
<tr>
<td>Fault type</td>
<td>Reverse</td>
<td>Reverse</td>
<td>Normal</td>
<td>Reverse</td>
<td>Reverse</td>
<td>Normal</td>
</tr>
</tbody>
</table>

soft rock site (basic case)
hard rock site
Analytical Results for Basic Case

- The building rotates almost rigidly.
- Supported only near the fault plane at fault displacement 60cm
- Max. value of out-of-plane shear stress of base mat slab: immediately above the fault plane
- Significant at dominant uplift of base mat slab
- Concrete and rebar: within the elastic limit

Contact pressure
(Basic case: fault disp. 60cm)

Out-of-plane shear stress
(Basic case: fault disp. 60cm)
Study on Epistemic Uncertainty Part.1

[Analyses with **fault types** as variables]

Stress and strain at fault displacement 60cm

<table>
<thead>
<tr>
<th>Fault type</th>
<th>Base mat slab</th>
<th>Outer walls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concrete</td>
<td>Rebar</td>
</tr>
<tr>
<td></td>
<td>compressive</td>
<td>tensile</td>
</tr>
<tr>
<td>Reverse (Basic)</td>
<td>964.1μ</td>
<td>489.7μ</td>
</tr>
<tr>
<td>Normal</td>
<td>851.0μ</td>
<td>1825μ</td>
</tr>
</tbody>
</table>

- **Reverse fault**: compressive stress field
 - Base mat slab concrete compressive strain: large
- **Normal fault**: tensile stress field
 - Base mat slab some rebars: yield in tensile strain
 - Base mat slab out-of-plane shear stress: increase
 - Outer walls out-of-plane shear stress: very small
Study on Epistemic Uncertainty Part.2

[Analyses with fault position and dip angle as variables]

Out-of-plane shear stress at fault displacement 60cm

<table>
<thead>
<tr>
<th>Fault position</th>
<th>Base mat slab</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 of base mat (Basic)</td>
<td>2.380MPa</td>
</tr>
<tr>
<td>1/4 of base mat</td>
<td>2.524MPa</td>
</tr>
</tbody>
</table>

- Fault position shifts to the hanging wall, base mat slab out-of-plane shear stress and uplift increase.

Out-of-plane shear stress at fault displacement 60cm

<table>
<thead>
<tr>
<th>Dip angle</th>
<th>Base mat slab</th>
</tr>
</thead>
<tbody>
<tr>
<td>60° (Basic)</td>
<td>2.380MPa</td>
</tr>
<tr>
<td>30°</td>
<td>2.023MPa</td>
</tr>
</tbody>
</table>

- The larger dip angle, the greater base mat slab out-of-plane shear stress
Analytical Results for Case12 (Hard Rock Site)

- Suppressed uplift of base mat slab by surface hard soil (Vs=1500m/s)
- Increase of compression force due to the reverse fault displacement

- Warp of some elements at the edge of the base mat slab
- Out-of-plane shear stress max. value: **4.21MPa at the edge**
 (Cf. Max. value for soft rock site: 2.38MPa above the fault plane)

Deformation plot
(Case12 : fault disp. 60cm)

Out-of-plane shear stress
(Case12 : fault disp. 60cm)
Deformation Distribution of Base Mat Slab

- **Rigid body rotation** of building
- The softer the surface soil, the clearer the uplift of base mat slab
- **Local out-of-plane deformation** gradual increase
- No difference between soft and hard rock site above the fault plane

Vertical displacement (every fault disp. 10cm)

Variation in rotation angle (every fault disp. 10cm)

Case0 (soft rock site) **Case12** (hard rock site)
Main Failure Mode for Fragility Evaluation

- Out-of-plane failure of building outer walls: no dominant failure mode by considering realistic surface soil
- Out-of-plane failure of base mat slab: target of fragility evaluation

<table>
<thead>
<tr>
<th>Fault type</th>
<th>Effect on the building</th>
<th>Failure mode of outer wall</th>
<th>Failure mode of base mat slab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Dip-slip displacement</td>
<td>In-plane shear failure</td>
<td>Out-of-plane flexural/shear failure</td>
</tr>
<tr>
<td>Reverse</td>
<td>Dip-slip displacement</td>
<td>In-plane shear failure</td>
<td>Out-of-plane flexural/shear failure</td>
</tr>
<tr>
<td></td>
<td>Compression force in the direction orthogonal to the fault plane</td>
<td>Out-of-plane flexural/shear failure (underground)</td>
<td>—※</td>
</tr>
<tr>
<td>Strike-slip</td>
<td>Strike-slip displacement</td>
<td>Out-of-plane flexural/shear failure (underground)</td>
<td>—※</td>
</tr>
</tbody>
</table>

※Although it generates stress, it will not reach the failure level.
Policy for fragility Evaluation

[Inside the containment vessel (shell wall)]
- Focusing on the support function of the containment vessel
- Maximum out-of-plane shear stress of one element

[Outside the containment vessel (shell wall)]
- Focusing on the stability of the reactor building as a whole
- Average out-of-plane shear stress

Out-of-plane shear stress (Case12: fault disp. 60cm)

Max: 4.21 MPa
Ave: 2.30 MPa

Max: 2.54 MPa

Fault position

Inside shell

Outside shell
Preliminary fragility evaluation under the following conditions
> Median: The analysis results every 10 cm
> Logarithmic standard deviation: 0.20 on both aleatory and epistemic uncertainty (from the previous study)
• Conditional failure probability at fault displacement 60 cm: 21%

• Median fragility curve by method of least squares

[Inside shell]
• Median (50% failure probability): 79 cm
• HCLPF value: 32 cm
• Smaller than outside shell

Cf. HCLPF: High Confidence Low Probability of Failure
Fragility Evaluation Results for Hard Rock Site

- Median and logarithmic standard deviation same conditions as soft rock site

[Inside shell]
- Median (50% failure probability) : 63cm
- HCLPF value : 38cm
- Cliff edge at fault displacement 50cm

[Outside shell]
- Median (50% failure probability) : 77cm
- HCLPF value : 36cm
Conclusions and Future Issues

[Conclusions]

- Nonlinear soil-structure interaction finite element analyses
- Quantitative results considering uncertainty against fault displacement
 - Logarithmic standard deviation: 0.20 (for aleatory and epistemic uncertainty)
- Out-of-plane shear stress for hard rock site: slightly larger
- No significant difference between soft and hard rock site
- Major failure mode: out-of-plane shear failure of base mat slab
- HCLPF value for both soft and hard rock site: more than 30cm

[Future Issues]

- More generic fragility data
- Uncertainty of fault type such as strike-slip fault